Calc I: Worksheet (Week 9)

Inverse Trig Functions

- 1. True or false:
 - (a) If $x = \frac{5}{3}\pi$, then $\sin^{-1}(\sin(\frac{5}{3}\pi)) = \frac{5}{3}\pi$
 - (b) The range of $\cos^{-1}(x)$ is $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ (think about how $\cos^{-1}(x)$ is formed by restricting the domain of $\cos(x)$).
 - (c) $\lim_{x \to -\infty} \tan^{-1}(x) = -\frac{\pi}{2}$
- 2. Find $\frac{d}{dx} \cot^{-1}(x)$ by setting $y = \cot(x)$ and differentiating both sides (this is similar to a homework problem you had).
- 3. Evaluate the following:
 - (a) $\sin^{-1}(\sin(\frac{7}{4}\pi))$
 - (b) $\sin^{-1}(\frac{1}{\sqrt{2}})$
 - (c) arctan(1)
 - (d) $\sin(2\sin^{-1}(\frac{3}{5}))$
- 4. Prove that $\sin^{-1}(x) + \cos^{-1}(x) = \frac{\pi}{2}$ (Hint: Show that $\sin(\sin^{-1}(x) + \cos^{-1}(x)) = 1$, using the formula for $\sin(a+b)$).
- 5. Find the derivative of:
 - (a) $y = \tan^{-1}(x^2)$
 - (b) $\sqrt{1-x^2}\cos^{-1}(x)$
 - (c) $x \ln(\tan^{-1}(x))$

L'Hopital's Rule

- 6. True or False:
 - (a) I can use L'Hopital's rule to evaluate $\lim_{x\to 3}\frac{e^{x-3}}{x-3}$
 - (b) If f(0) = 0 and g(0) = 0 and f and g are differentiable, then a limit of the form $\lim_{x \to 0} \frac{f(x)}{g(x)}$ is equal to the same limit of the *derivative* of $\frac{f(x)}{g(x)}$.
 - (c) I can use L'Hopital's rule on $\lim_{x\to\pi}\csc(x) + \cot(x)$.
- 7. Evaluate the following:

- (a) $\lim_{x \to 1} \frac{x^2 1}{x^2 x}$
- (b) $\lim_{x \to 0^+} \frac{\ln(x)}{x}$
- (c) $\lim_{x \to 0} \frac{\cos x 1 + \frac{1}{2}x^2}{x^4}$
- (d) $\lim_{x\to 0^+} \sin(x) \ln(x)$
- 8. Use L'Hopital's rule to show a cool property of the exponential function:

$$e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n$$

9. Suppose f is a positive function. If $\lim_{x\to a} f(x) = 0$ and $\lim_{x\to a} g(x) = \infty$, show that

$$\lim_{x \to a} [f(x)]^{g(x)} = 0$$

(this shows that 0^{∞} is not an indeterminate form)